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Steady flow in rapidly rotating circular expansions 

By J. S. WALKER 
Department of Theoretical and Applied Mechanics, University of Illinois, Urbana 

(Received 18 January 1974 and in  revised form 9 May 1974) 

Inertialess incompressible flow through a rapidly rotating, variable-area conduit 
of circular cross-section is treated. For the practical case of an expansion (or 
contraction) placed between two pipes, the flow is strongly asymmetrical and 
involves regions of weak reverse flow in the expansion and downstream pipe, 
while the disturbance to  the fully developed pipe flows persists for large, O(E-4) 
distances upstream and downstream, where E is the (small) Ekman number. 
The flow in the two pipes depends only on the ratio of their radii and is inde- 
pendent of the shape and length of the expansion. The startling implication of 
the disturbance’s persistence is that, in practice, fully developed flow will almost 
never be realized in rapidly rotating pipes. 

1. Introduction 
This paper treats the flow of a liquid through a circular expansion (or contrac- 

tion) which is rotating rapidly about an axis perpendicular to  its centre-line. 
The expansion’s wall is defined by 

in a rotating co-ordinate system with the x axis along the centre-line and the y 
axis parallel to  the axis of rotation (see figure 1) .  The flow is steady in this co- 
ordinate system. The speed of rotation is sufficiently great for inertia to be 
neglected and for viscous effects to be confined to  thin boundary layers adjacent 
to the wall. The wall is assumed t o  be smooth (i.e. the slopef’ is bounded and 
continuous), so that free shear layers parallel to  the axis of rotation do not occur. 

The most general solution of the inviscid core equations and boundary condi- 
tions at the wall is presented in 3 2. The geometry of the entire conduit must be 
specified before the integration function in this solution can be determined. 

For definiteness and because of its practical importance, an expansion placed 
between two semi-infinite pipes of different (constant) radii is considered in 3 3. 
The problem is reduced to determining very slow changes in the flow over large, 
O(E-4) lengths of the two pipes, where E is the (small) Ekman number. The 
analysis in each pipe is reduced t o  a single Sturm-Liouville eigenvalue problem. 
Once the eigenvalues and eigenfunctions have been found, the solution in each 
pipe can be written as an eigenfunction expansion, where the coefficients in the 
two expansions are determined by conditions linking the two solutions. A 
numerical procedure for finding the eigenvalues and eigenfunctions and the 
coefficients in the two expansions is given in 3 4. 

y2 + 22 = f2( x) 

42 F L M  66 



658 J .  S. Walker 

FIGURE 1. Expansion with circular cross-section. 

The results for a conduit in which the radius of the downstream pipe is one and 
a half times that of the upstream pipe are presented in 5 5. The numerical values 
in the following general description refer to this conduit. The flow begins to 
deviate from fully developed flow at a distance 0*25E-*d upstream of the expan- 
sion, where d is the radius of the upstream pipe. The flow inside the expansion is 
geostrophic. The flow from the upstream pipe to the downstream one is split 
into a weak flow along the geostrophic surfaces in - f < z < - (fz - I)& and a 
strong flow along those in (f - I)& < z < f, while a weak flow along the surfaces 
in IzI < (f2-l)* enters the expansion from and returns to the downstream 
pipe. In  the downstream pipe, the flow returns to fully developed flow a t  a 
distance O.9E-td from the expansion. The flow in the two pipes is independent 
of y and of the shape f and length Id  of the expansion. 

The analysis presented here is similar to that given by Walker & Ludford 
(1974) for MHD flow in insulated circular expansions with strong transverse 
magnetic fields. Wherever possible the presentation here parallels that in Walker 
& Ludford's paper in order to emphasize the analogy between MHD and ro- 
tating flows. 

2. Geostrophic flow 
The flow considered here is incompressible and steady relative to a Cartesian 

co-ordinate system rotating at a constant angular velocity o = w 9  with respect 
to some inertial system, so that the non-dimensional governing equations are 

where @ = ( p / p  + g5 - &J2a2)/3wUd 

is the reduced pressure (see Greenspan 1968, p. 6) .  Here 9 is a unit vector in 
the y direction, v is the velocity, Ro = U/2wd  and E = v / 2 u d 2  are the Rossby 
and Ekman numbers respectively, p is the true pressure, p is the density, g5 is 
the gravitational potential, a is the perpendicular distance from the axis of 
rotation, U is the characteristic velocity, d is the characteristic length and v is 
the (constant) kinematic viscosity. 

V.V = 0, Ro(v.V)V = - V @ - - Q X V + E V V ,  (1% b )  
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FIGURE 2.  Cross-section showing flow subregions. 

The flow is confined by an expansion (or contraction) with circular cross- 
sections and with its centre-line perpendicular to the axis of rotation (see figure 
1). The radius a t  some section, say x = 0,  is used for d ,  and the average velocity 
at the same section is used for U ,  so that 

(1 -2y 

- (1 - SZ)+ 

u(0, y, z )  dydz = 77.. (2% b )  f (0)  = 1, S'y 
The boundary conditions are 

v = o a t  y = - t ( fz-z2)4.  

Together with the governing equations ( 1 )  these form a homogeneous boundary- 
value problem whose solution is normalized by the mass-flux condition (2b) .  

For a sufficiently rapid speed of rotation the condition h?o < 1 holds, so that 
the inertia term on the left-hand side of ( l b )  can be neglected (see $6) .  If the 
condition E 1 also holds the flow region can be divided into several parts, 
certain viscous terms in ( l b )  being negligible in each subregion. The various 
subregions (shown in figure 2) are ( a )  the core, ( b )  Eknian layers and ( c )  side 
regions. 

The variables in the Ekman layers are determined locally by the tangential 
velocity outside and automatically match the core variables provided that the 
latter satisfy 

when O(E4) terms are neglected. I n  other words, the no-slip condition a t  the 
wall is relaxed for the inviscid core flow since the viscous Ekman layers are 
able to satisfy the neglected no-slip condition and match the tangential core 
velocity outside. The Ekman layers break down near the points where the wall 
is parallel to the axis of rotation and side regions are needed to match the core 
variables near y = 0 as z+ & f and the Ekman-layer variables near 

ff 'u = yv + zw at y = ( f 2  - z 2 ) t  (3)  

as z-+ -t f. 
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Stewartson (1966) treated similar side regions and his analysis shows that the 
O( 1) solution elsewhere can be determined without considering the corner 
regions in detail as long as the core variables satisfy the regularity conditions 

( f 2 - z z " ) - ~ ( u ~ j f l w ) + O  as z+ k f  a t  y = 0, 14) 

which select the least-singular solution. 
The core variables satisfying (1 )  and the Ekman conditions (3) are 

u = a@/az, v = 0, w = -aa/ax, (5% b, c) 

where CD is a function of s = (f - z2)4 alone and u, v, w and CD now denote the 
O( I )  terms in the asymptotic expansions of the core variables (see $6). Vertical 
lines of fixed length 3c inside the expansion generate a geostrophic surface on 
which s = c ,  is constant and v is horizontal and tangential. Thus the governing 
equations ( I )  and Ekman conditions (3) require the core flow to be geostrophic 
but do not specify how the total mass flux is distributed among the geostrophic 
surfaces. 

For fully developed flow in constant-area pipes, Benton 85 Boyer (1966) 
extended the Ekman-layer solution to higher-order terms in order to obtain 
boundary conditions on the O(E4) core variables a t  the wall. Together with the 
regularity conditions (4) these determined an integration function @ ( z )  in their 
O( 1)  core solution, as well as the O(E4) y and x velocities, but left an integration 
function 6 ( z )  in the O(E*) reduced pressure with the O(E*) x velocity a related 
to this function by (5a )  with carets added. In  the present problem a higher- 
order Ekman-layer analysis yields no further conditions on the O( 1) solution 
(5) as long as f' + 0. However, when f '  = 0 and a/ax = O(E4), the relationship 
between the terms in the governing equations ( 1 )  and Ekman conditions changes, 
so that the solution (5) is not the correct one and the situation is similar to that 
for fully developed flow. Therefore, in order to determine the function CD(s) for 
a given expansion, the geostrophic surfaces must be followed until they enter a 
constant-area pipe in which the flow is changing slowly. 

3. Expansion between two pipes 

with different (constant) radii is considered, so that: 
For definiteness an expansion placed between a pair of semi-infinite pipes 

f = { l  e for for x x d o '  2 I ,  

where the expansion ratio e > 1. For a contraction placed between two pipes, 
the geometry is reversed, 

= [ e  for x < -1, 

1 for x > 0,  

and the solution is obtained by changing the signs of certain variables in the 
solution for an expansion. For a smooth expansion f ' ( O + )  = f ' ( Z - )  = 0. 
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FIGURE 3. Geostrophic surfaces s = (f2(z) -z2)4. 

Two typical geostrophic surfaces in an expansion are sketched in figure 3. 
The surfaces for 0 < s < 1 extend from x = - 00 to x = +a, while those for 
1 < s < e begin and end a t  x = +a. If the solution ( 5 )  held everywhere, then 
whatever the flow upstream, it would be carried into two separated regions 
(e2- I)& < IzJ < e downstream, while the flow in between [ Jz l  < (e2 - 1)4] would 
have an x velocity profile antisymmetric in z .  This hypothetical flow in the 
downstream pipe satisfies the condition for fully developed flow, i.e. a/ax = 0, 
but it is clearly not the flow found by Benton & Boyer (1966). The contradiction 
arises because gradual changes occurring over large, O( E-4) distances in both 
pipes have been ignored. The Ekman conditions (3) and thus the solution ( 5 )  
neglect O(E3) velocities, but over an O(E-4) length of pipe, such a velocity 
normal to the geostrophic surfaces can account for a slow migration of the flow 
across these surfaces. It turns out that this slow migration allows the flow to 
become fully developed as E4x-t + co, but also causes the flow to deviate from 
fully developed by an O(E-*) distance upstream of the expansion. 

In order to study the slowly evolving flow in both pipes, the x scale is com- 
pressed by introducing a new co-ordinate 

X = E~x. 

The expansion now collapses onto the plane X = 0, and the problem is reduced 
to finding an outer solution for the upstream pipe (X < 0) and another for the 
downstream pipe (X > 0). Matching these outer solutions as X -f Oh to the inner 
solution ( 5 )  as x - f  & co yields the boundary conditions 

on the outer solutions, where 

Z = sgn (2) (22 + 1 - e2)J 

and O(E4) terms are neglected. 

Ekman conditions (3) are 
The outer variables satisfying the governing equations (1) and the O(1) 

u = m p z ,  v = 9, w = -aqax, (7) 
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where CD and g are integration functions of X and z. Here u and CD denote O( 1) 
terms and u and w denote O(E4) terms, these being the leading terms in the 
asymptotic expansions for these variables in both pipes (see Q 6). 

The O(Eh) Ekman condition needed to determine CD and g is derived as follows. 
Equations (1) are written in cylindrical co-ordinates ( r ,  8, x), where the y axis 
lies in the plane 8 = 0 and the z axis lies in the plane 8 = $7~. The x scale is com- 
pressed as before and the radial scale is stretched by introducing 

n = E-&( f - r ) ,  

1 for S < 0, 

f = {  e for S > 0. 
where now 

The O( 1) Ekman-layer variables, denoted by capitals, which satisfy the resulting 
equations and match the O( 1) axial core velocity wJr, 8, x) are 

V ,  = w,(f, 8 ,  x) [I - cos(an) exp (-an)], 

V, = - sgn (cos 8) u,(f, 8, x) sin (an) exp ( -an), 

where a: = (alcos8p. 

This solution is substituted into the continuity equation ( I  a), which is integrated 
from n = 0 to  n = co to  obtain a boundary condition on the O(E4) radial core 
velocity: 

ur = - sgn (cos 8 )  (tan 8u, + 2au,/a8)/4a! f at r = f .  

This represents nothing more than the familiar Ekman pumping. 

must be zero and CD must satisfy 
I n  order for the solution (7) to satisfy this additional Ekman condition, g 

(8) ( f 2 - 2 2 )  a2@/&2+ g ~ a @ / a z  = ( 2 / f ) g z ( f 2 - 2 2 ) P a ~ / a s .  

The solution of (8) must also satisfy the regularity conditions (4), which now 
become 

( f2 -zz) - - fa@/az+o as z+ +J. (9) 

For fully developed flow in an infinite pipe 

f = 1, aCD/aS = -cl, a constant, 

so that the solution of (8) and (9) is 

CD = c , ( Y ( z )  - X) + c2, (10a) 

where Y = qo2 (1  - t2)8dt, ( l o b )  

c2 is an additive constant pressure and el is determined by the mass-flux condition 
(3b) :  

( 10c) 

If this solution is rescaled so that u = I a t  z = 0 and f = 0.5, it is then identical 
to the solution given by Benton & Boyer (1966), which agrees well with their 
experimental results. 

c1 = 2.1 ($7T)* r(f)/r(a) = 0.890. 
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Separation of the variables according to 

@ = $(<) exp (hlk’f-22-4), 6 = zf-1, (11)  

reduces (8) and (9) to an eigenvalue problem governed by the ordinary dif- 
ferential equation 

( 1  - 52)  $kn + t5fy = A<( 1 - p)*@ (12) 

( I - -~~) -+P-+O as [+ i. I .  (13) 

in - 1 < 6 < I ,  together with the conditions 

The constant f has now disappeared, so that the eigenfunctions and eigenvalues 
apply to a pipe of any diameter and in particular to both the upstream and 
downstream pipes. 

( j  = 1,2,3, ...), where = -hi < 0 and $+(6) = $ j (  -5).  The exception is 
A, = 0, which is a double eigenvalue, corresponding to fully developed flow. 
The two eigenfunctions for A, correspond to  c1 and c2 in the solution (10). 

Equation (12) is a Sturm-Liouville equation with a weighting function 

In general, the eigenvalues of the problem (12) and (13) occur in pairs 

q(C) = a 1  - 5”-k 
and the conditions (1  3) are precisely the ones needed to prove the orthogonality 
ofthe eigenfunctions (see Courant & Hilbert 1953, p. 291). Thus the eigenfunctions 
for $: 0 are orthogonal to each other and to both eigenfunctions for A,= 0: 

q$i$kd<= 0 for i , k +  0, i +  k, 1’1 

The negative eigenvalues are excluded upstream and the positive eigen- 
values hj  excluded downstream because they make @ unbounded as X - t  i co 
respectively. The solution in each pipe can be expanded in the remaining eigen- 
functions, the coefficients in the two expansions being determined by the boun- 
dary conditions (6). A numerical scheme for this purpose is presented in the 
next section. 

4. Numerical analysis 

integration of (12) yields a $ which satisfies both regularity conditions (13). 

y = f 1. With the substitutions 

Each eigenvalue is found by adjusting h until a fourth-order Runge-Kutta 

The fractional power in (12) makes it difficult to investigate the solution near 

$(Y) = h(5), 5 = 1 -E4 for 0 < 5 6 1, 

equation (12) becomes 

g(2 - c4) h“ - (S - 5t4) h’ = 16ht6( 1 - c4) (2 - E4)% 
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in 0 < f ;  6 1 ,  and the condition (13 )  a t  6 = 1 becomes 

[-4h'-+0 as [ + O .  (15) 

The coefficient of h" in (14) vanishes a t  E = 0, so a power series in [ is used to 
find the values of h and h' a t  Eo, where 0 < to < 1, the numerical integration 
taking over a t  Eo. Substituting 

into (14) yields a quadratic equation for /3 with roots /3 = 0 and 5 ,  as well as 
recursion formulae for the coefficients A in each case. The first root satisfies 
the condition (15) because the first six corresponding coefficients A for 

j = 1,2,  ..., 6 

are all zero, while the second root is excluded by condition (15 ) .  

25 terms and was used to obtain h and h' a t  5, = 0-001 for a given value 
For the present calculations, the series (16), with /3 = 0, was truncated after 

h = A > O .  

A fourth-order Runge-Kutta integration of (14) from to to 1 with a step size of 
0.001 was used to obtain the values of h and h' a t  c = 1.  

With the substitutions 

$(<) = H ( t ) ,  c =  c4- l  for - 1  < c <  0, 

equation (12) and condition (13 )  at 5 = - 1 become equation (14) and condition 
(15) with h replaced by H and A by - A .  Thus the procedure just outlined for 
0 < 6 < 1 is repeated with A = - A  to obtain the values of H and H' a t  c = 1 .  
The trial value A = A is an eigenvalue if 

A = h ( l ) H ' ( l ) + h ' ( l ) H ( 1 )  

is zero. If the 'error' A turns out to be non-zero, h must be adjusted and the 
procedure repeated until A vanishes. 

First A was computed for a range of values h = 50,100,150,200, . . . , in order to 
locate all the eigenvalues by changes in sign. Then the eigenvalue in any particular 
interval of h was determined by repeated linear interpolation, four or five 
iterations giving eight-place accuracy. The first 36 positive eigenvalues are 
listed in table 1.  The second difference of adjacent eigenvalues is approximately 
35-6 throughout, indicating that none have been missed. The corresponding 
eigenfunctions $j are of no particular interest a,nd are not given here. 

The outer solutions in the upstream and downstream pipes are now approxi- 
mated by the truncated eigenfunction expansions 

36 

i = l  
0 = c , ( r ( z ) - s ) +  ai$&)exp(hiX2-*), 

36 

L = l  
0 = c , e - l (Y( ze - l ) -Xe-Z)+b ,+  3 b,~$.i(-ze-ljexp(-A,Se-2~-9),  
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23.61 
82.13 

176.25 
305.94 
471.24 
672.12 
908.60 

1180.68 
1488.35 

1831.62 
2210.49 
2 624.95 
3075.01 
3 560.67 
4081.92 
4638.77 
5231.22 
5859.27 

6522.92 
7222.17 
7 957.01 
8 727.46 
9 5 3 3 3 0  

10 375.15 
11  252.40 
12165.25 
13113.70 

14097.76 
15 117.42 
16172.69 
17263.57 
18 390.05 
19 552.15 
20 749.85 
21 983.17 
23 252.1 1 

TABLE 1.  First 36 positive eigenvalues 

respectively. Here the leading terms represent fully developed flow (lo), corres- 
ponding to A, = 0, which has been normalized to give a mass flux of 7~ in both 
pipes. An unnecessary additive constant in the upstream solution has been 
dropped. 

The 73 coeficients ai, b, and bl for i = 1 , 2 , 3 ,  ..., 36 are determined as follows. 
First the expansions (17) are substituted into the boundary conditions (6).  Next 
( 6 b ) ,  which defines @(0-,2)  for - 1 < 2 < 1, is multiplied by q ( 2 )  I)~(Z) for 
j = 1,2,3,  . . ., 36 and integrated over this Z range to obtain 36 linear algebraic 
equations. Similarly, equations (6), which together define @(Of, z )  for 

- e  < z < e ,  

are multiplied by p(ze- l )  I)j( - ze- l )  f o r j  = 1 , 2 , 3 ,  ..., 36 and by q(ze- l )Y(ze- l ) ,  
the resulting equations being integrated over this z range to obtain 37 more 
equations. Finally these 73 equations are solved to obtain the 73 coefficients in 
the expansions ( 17). 

Once the outer solutions for @ in both pipes are known, the corresponding 
velocities are given by (7 ) ,  the unknown function @(s) in the inner solution is 
obtained by matching this solut'ion and the downstream outer solution, and 
the velocities in the expansion are given by ( 5 ) .  

For the present calculations, the eigenfunctions were normalized by 

- 1) = A i 4  

because the values 1 and h i 2  led to integrals which were too large for the com- 
puter. Simpson's rule was used to evaluate the integrals of products of eigen- 
functions which appear as coefficients in the equations governing ai ,  b, and hi. 

5. Results and discussions for e = 1.5 

Several profiles of CD for the upstream and downstream outer solutions are 
presented in figure 4 for an expansion with e = 1-5. Equations (7 ) ,  with v = 0, 
imply that @ is a stream function for the velocity in the outer solutions, so the 
surfaces @ = constant are stream surfaces, just as they are in geostrophic flow, 
although they no longer coincide with the geostrophic surfaces. The streamlines 
0 = - 1.0, - 0.8, - 0.6, . . . , 1.2 in the y = 0 plane are plotted in figure 5. It should 
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FIGURE 4. Profiles of @ for e = 1-5 in the (a)  upstream and ( 6 )  downstream pipes. 
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FIGURE 5. Streamlines CI, = - 1.0, - 0.8, - 0.6, . . ., 1.2 in the plane y = 0. 

be remembered that S is a compressed x scale, so that the streamline slopes are 
greatly exaggerated. 

Upstream the flow is drawn in the + z  direction and the streamlines for 
-0.775 < @ < 0.4 are concentrated in the interval 0 < z < 0-4 a t  X = 0-. 
These streamlines follow the geostrophic surfaces 0.84 < s < 1 inside the ex- 
pansion and enter the downstream pipe in the interval (e2 - l)* = 1.1 18 < z < 1.2. 
They fan out in the downstream pipe, so that fully developed flow is re-estab- 
lished in a relatively short distance on the X scale. 

The streamlines @ = - 0.78, - 0.76, - 0.74, ..., - 0.60 in the plane y = 0 for 
0 < X < 0.08 are plotted in figure 6. All of these streamlines except @ = - 0.78 
are concentrated in 1.118 < z < 1.135 a t  X = Of. For -0.775 < @ < -0.698, 
the streamlines bend backwards, so u < 0, and return to  S = Of in 0 < z < 1.118. 
They follow the geostrophic surfaces I < s < 1.5 inside the expansion and 
cross X = O+ a third time in - 1-118 < z < 0. For - 0.698 < @ < - 0.625, the 
streamlines also bend backwards, so u < 0, but bend forwards again without 
returning to  S = O+. For CJ < - 0.775 and @ > - 0.625, u is always positive. 

The approach to  fully developed flow upstream and downstream is illustrated 
by plots of the values of @ and u on the centre-plane z = 0, which are given in 
figure 7. Figures 7 (a )  and (b)  indicate that the flow begins to  deviate from fully 



G G 8  J .  S .  Wa,lker 

2 

FIGURE 6. Streamlines @ = -0.78, -0.76, -0.74, ..., -0.60 in the plane 
y = 0 for 0 < S < 0-08. 

developed flow at X = -0.25, while figures 7(c) and ( d )  indicate that the flow 
returns to fully developed flow at X = 0-9. 

In  the solution for e = 1.5, b, = - 0.19926 (the values of ai and bi for i = 1 , 2 ,  
3, ..., 36 are of no particular interest). If a geostrophic flow could match both 
fully developed flows, b, would be zero, so b, represents the pressure drop 
required to effect the complicated transition from one fully developed flow to 
the other. 

One rather interesting result is that the flow in both pipes is independent of 
the shape f and length 1 of the expansion and depends only on the expansion 
ratio e .  The analysis also shows quite generally that entrance and exit effects 
persist for a large, O(E-k) distance into rapidly rotating pipes, which means that 
fully developed flow will almost never be realized in practice. Part of the dif- 
ference between fully developed flow and the experimental results obtained by 
Benton & Boyer (1966) may very well be due to entrance and exit effects, since 
100 < E-b- < 149 for their experiments. Their tentative conclusion that this 
difference might decrease if Ro and E were reduced may not be true in view of 
the present results. 

The analysis for circular expansions can be extended to rapidly rotating 
expansions with other cross-sections provided that no segment of the wall is 
parallel to the axis of rotation. In fact, the general discussion given by Walker 
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FIGURE 7. Values of @ and u a t  z = 0, showing the approach to fully developed flow. (a)  @ 

and ( b )  u in the upstream pipe. ( c )  @ and ( d )  u in the downstream pipe. 

8r; Ludford (1974) for MHD flow in insulated circular expansions applies here. 
Finally, this analysis coupled with that for rapidly rotating rectangular expan- 
sions (Walker 1975) also covers expansions with wall segments parallel to the 
axis of rotation. With this extension, solutions are known for all rapidly rotating 
expansions. 

6. Limitations of the inertialess approximation 
The governing equations (1)  involve two parameters, so the asymptotic 

analysis in each subregion of the flow involves a double power series in Ro and 
E for each variable. For the core inside the expansion (v .  V)V is O( l), so that the 
correct expansion for @ is m m  

= 2 2 RotE?d@(i,j), (18) 
i = o j = o  
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where the coefficient functions are independent of Ro and E. The other expansions 
are identical. The variables in ( 5 )  actually represent W o * O ) ,  u ( O > O ) ,  do, O )  and w(O,O). The 
present analysis uses only the leading terms, so the only restriction on Ro is 

Ro< 1. (19) 

The Reynolds number Re = U d / v  = Ro/E, so condition (19) is equivalent to 

Re < E-I, 

which is the condition given by Benton & Boyer (1966). 

pansion for @ (or u) is still (18), while the correct one for v (or w) is 
For the core in the two pipes (v.V)v is O(EB) so the correct asymptotic ex- 

c o r n  
= E& x x RoiE$iv(i.i). 

i = o j = o  

The variables in (7) actually denote @ ( O , O ) ,  u ( O , O ) ,  ~ ( 0 . 0 )  and w(Op0) in these asymp- 
totic expansions. Again only leading terms are needed and the restriction (19) 
suffices. 

Consideration of the Ekman layers and side regions inside the expansion and 
in the two pipes yields the same condition (19) on Ro. 

Since separation is intrinsically inertial, it  is suppressed in the inertialess 
approximation. 

I f f  is continuous but f '  is not, a free shear layer O(E4) in thickness occurs at 
the cross-section where f' is discontinuous. The flow upstream and downstream 
is geostrophic, the normal velocity is continuous across the layer and the layer 
accommodates the jump in tangential velocity. The analysis of such a layer 
involves O(E$ terms in ( l b )  while (v.V)v is O(E-*), so that the inertialess 
approximation requires 

Ro < EP. 

Combining the present analysis with that for O(E4) layers (Howard 1969, p. 93) 
yields the inertialess solution for a conical expansion placed between two pipes, 
for example. 

I f f  itself is discontinuous, the flow is much more complex and it does not 
appear to be inertialess in the neighbourhood of the discontinuity no matter 
what restrictions are placed on Ro. It seems likely that separation would occur 
in a sudden expansion or contraction no matter how fast the speed of rotation. 

The author is deeply indebted to Dr J. C. R. Hunt and Dr G. S. S. Ludford for 
arousing his interest in the present problem. This research was supported by the 
National Science Foundation under Grant GR 37437. 
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